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ABSTRACT

The work described is a continuation of that reported
previously in AEDC-TN-61-65, AEDC-TDR-62-131, and AEDC-TDR-(G3-82,
The present report contains a general method for integrating
numerically through a saddle-point singularity of an ordinary
differential equation. The solution of the differential equation
is assumed to depend also on the value of & parameler, such as
the mass flow. The method is thus applicable to a wide assort-
ment of gas-dynamlic problems including one-dimensional nonequi-
librium nozzle flow and two-phase nozzle flow.

Specific application is made to nonequilibrium nozzle flow,
and the results of this application are presented and discussed.
The method proved to be numerically accurate without requiring an
exceedingly precise estimate for the critical mass flow,

The work also includes a modification of the method for

calculating approximate equilibrium nozzle flows first given in
AEDC-TDR-62-131.
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SYMBOLS

PRIMARY SYMBOLS

i,eq
P,Q

nozzle ares
given nozzle area
defined by equation (3-37)

speeific heat of translallon and rotation at constant
pressure per mole of species 1

percent error defined by equation (3-9)

energy of reaction per mole of species 1
vibrational energy per mole of species 1

defined in Section 3.5

integration step size

enthalpy per unit mass of fluid

stagnation enthalpy per unit mass of fluid

Mach number based on the frozen speed of sound

mass flow per unit time

mass flow per unit time for the equilibrium-flow solution
mass flow per unit time for the frozen-flow solutiocon
defined by equation (1-3)

total number of chemical species

mole-mass ratio of species 1 ; that is, number of moles
of species 1 per unit mass of fluid

value of n, for the equilibrium-flow solution
defined by equation (2-1)

universal gas constant

static temperature

vi
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u flow speed

' length of region IV :
Vi input parameters defined in Chapter 3
XPQ parameter defined by equation (2-5)
b'd distence along nozzle axis

X,y variables in equation (2-1)

x defined by equation (3-18)

[0 parameter defined in Chapter 2

v ratio of specific heats

Ny constants defined in Section 3.5
xl(i) function defined by eguation (3-19)
xz(i) function defined by eguation (3-21)

o) mass density of fluid

¢ defined by equation (3-4)

SUPERSCRIPT'S AND SUBSCRIPTS

() value at the saddle-point singularity

(¥ value at an extremum of xl(i)

()’ denotes differentiation with respect to X |
() velue at the preceding integration step x - h i
( )++ value at x - 2h

a,b defined in Section 3.7

er value associaled with the critical solution %
f frozen-flow value

i value for species 1

vii i
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o value at the initial point
opt value &t the optimum point
th value at the nozzle throat
tr velue at the transfer point
IIT velue assoclated with region III
IV value assoclated with region IV

viii
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1.0 INTRODUCTION

This is the fourth and final report in a series concerning the
calculation of the reacting flow of a complex gas in the nozzle of s
hypersonic wind tunnel. The preceding three reports, hercafter
referred to as Parts I, II, and IIT, dealt with the following topics:

(a) Part I, by Vincenti (1961), describes a five-species model
for air, governed by eight chemical kinetic reactions. A
method is given for the numerical calculation of the one-
dimensional nonequilibrium flow of this gas through a
hypersonic nozzle. A specific calculation carried out on
a high-speed digital computer revealed that the method
required too much computer time to be practical for
engineering purposes.

(b} Part II, by Emanuel end Vincenti (1962), desewihnc ~ sethod
i o quiTibriom e o—d o pley
wuave amount of
machine time. This 1 pusiv wisou contains an approximate

but relatively simple method for calculating cquilibrium
nozzle flows.

(¢) Part ITI, by Emanuel (1963), contains the analytical basis
for the numerical method described in Part II. The report
is thus concerned primarily with the interaction of s
"stiff", ordinary differential equation and various inte-
gration procedures.

The method described in Part II requires that the forward integra-
tion of the nonequilibrium equations proceed from an initial point that
is in equilibrium. This point is chosen somewhat upstream of the
nozzle location at which the chemistry first departs appreciably from
the equilibrium-flow solution. ¥or a sufficiently high stagnation
pressure, this point may be taken in the supersonic portion of the nozzle.
In this situation the nonequilibrium flow is readily calculated by the
method given in Part II. For low stagnation pressures, however, the
chemistry first departs from the equilibrium-flow solution at a subsonic
nozzle location, and the forward integration of the equations must now
proceed from a subsonic initial point. In this case the method given
in Part II must be modified to incorporate a procedure for dealing with
the singularity that occurs at the sonic point. This report describes
in detail one such method.

The sonic-point singularity occurs in both frozen and nonequilibrium
nozzle flows., In both instances it is a saddle point that occurs when
the numerator and denominator of the right-hand side of an ordinary dif-
ferential equation simultaneously become zero. The differentlal equation

involved is a gas-dynamic one. In the frozen-flow case, for example,
it is given by

e

i’
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1y (L A
ap (-1 (A dx)

dx 1 _Mi ’

(1-1)

where T 1s the temperature, x the distance along the nozzle axis,

7Y the ratio of specific heats, My the Mach number based on the frozen
speed of sound, and A +the nozzle area. For frozen flow, the location
of the singularity is at the throat and the critlcal mass flow is easily
determined. Eguation (3-1) assumes that the nozzle ares is a glven
function of x , as 1s generally the case, while the temperature is

the unknowni dependent variable, If the role of the two variables is
interchanged, 1.e., the temperature is a given function of x and the
area is the unknown dependent variable, then the singularity is

removed. This result 1s evident when eguation (1-1) is rewritten as

follows:
da __ﬁ_(l"M?)A % ?ET) (1-2)
ax

(7-1)

Thus, the singularity in one-dimensional nozzle flow occurs only when
the doubled-velued variable A 1is taken as the given function of x .

In nonequilibrium nozzle flow the situation is more complicated,
In particular, the location of the saddle point and the critical mass
flow are not known a priori., It is therefore necessary to guess a
value for the mass flow before starting the numerical integration.
This value, of course, will probably differ from the critical one, and
Lhe resulting solution will either be subsonic for the entire nozzle,
or an inTinity, which terminates the solution, will occur upstream of
the singularity.

The problem dealt with in this report may be stated as follows:
A solution is to be obtained that passes smoothly through the saddle-
point singularity of an ordinary differential eguation. This solution
furthermore depends on a parameter, such as the mass flow, whose precise
value is unknown. As such, this problem is encountered not only in
computing nonequilibrium nozzle or diffuser flow but occurs also in two-
phase nozzle or diffuser flow (see Glauz (1962)). It also appears in
inviscid flow about a two-dimensional or axisymmetric blunt body in a
supersonic stream when such flow is computed by the method of integral
relations (sce Belotserkovskii (1957) and (1958) or Xerikos and
Anderson (1962)).

A general solution to the foregoing problem is outlined in
Chapter 2. This solution takes the form of a well-defined numerical
method, hereafter referred to as the optimum-point method, that is well
suited for use with high-speed digital computers. The method has the
important advantages of being relatively simple to apply, not requiring
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an exceedingly precise estimate of the parameter, and yielding a aumeri-
cally accurate solution. Specific application, deseribed in Chapter 3
and in Appendix T, was made to nonequilibrium nozzle flows. Numerous
calculations on an IBM 7090 computer verified the simplicity and accuracy
of the method in this application. The results of one of these, along
with the corresponding equilibrium nozzle-flow solution, is presented in
Chapter 4. This chapter also discusses certain gas-dynamic results
stemming from this calculation. Finaslly, Appendix II modifies the approx-
imate equilibrium method first presented in Part II.

The singularity problem can also be attacked by means of trial-and-
error procedures, wherein numerous integrations are performed, each with
a slightly different value for the mass flow (see, for example,
Reichenbach (1960)). Once a subsonic soclution is available that is
sufficiently close to the critical one, the integration can then be
started from a supersonic initial point obtained by extrapolating the
subsonic solution across the singularity. This approach, however, consumes
a considerable amount of computer time and generally results in a more
accurate estimate for the critical mass flow than is actually needed.

Other methods also exist for dealing with saddle-point singularities.
These methods are applicable only in special circumstances. For example,
Eschenroeder, Boyer and Hall (1962) outline a method for dealing with
the singularity in nonequilibrium nozzle flow. Their method is based on
the assumption that the nonequilibrium value for the density differs neg-
ligibly from its equilibrium-flow value in the subsonic portion of the
nozzle., The equilibrium value of the density is then used as the inde-
pendent variable to calculate the subsonic portion of the nozzle. Another
special method designed for two-phase flows is due to Glauz (1962). This
method introduces & new dependent variable N defined by

w=dof -y’ (1-3)

Transformation (1-3) does remove the singularity from equation (1-1).
The transformed equation, however, must now simultaneously satisfy the
interior-boundary conditions N = 0 and (dN/dx) = O .

The author wishes to express his sincere gratitude to Professor
Walter G. Vincenti for his encouragement and assistance. ‘Thanks are also
due to Mrs., Lita Emanuel for editorial assistance and to Messrs. H. L.
Mitchell and Lyle B. Smith for computer programming. During the work
the author was supported in part by a research grant to Stanford University
from the National Science Foundation.

e A




AEDC-TDR-64.29

2.0 OPTIMUM-POINT METHOD

Before the optimum-point method is described in its simplest form,
some pertinent facts concerning saddle points will be presented.
Consider the single ordinary differential equation

dy _ P(x
dx ~ Qx,y (2.1)

with the initial condition y(xo) =y, - Inaddition, let the right-
hand side of eguation (2—1) decpénd on a parameter « not explicitly
shown in the equation. Conseguently, the solution of egquation (2.1),

y = y(x;0) , (2-2)

depends on @ . We also require that for a unique value of « , refer-
red to as the critical value G, » the differential equation has a
saddle point at (x*,y*) , as shown in Figure 1. For values of «
different from «,,. , the integral curves lie either above or below the
critical solution ¥,. = y(x;a,.) . Only two solutions of equation (2-1)
actually pass through the saddie point. One of these orlginates at a
point above y* , while the other originates below. We may restrict the
discussion to the case y, > y* without loss of generality.

In general, the critical value of « 1is not known a priori. 1In
this case, for some value of @ , say Qi (see Figure 1), the integral
curve y(x;09) has a minimum where P(x,y(x;0q)) is zero. This zero
generally does not occur at x = x* , Similarly, each integral curve
below the critical one has a point where @ 1s zero and the slope is
infinite. This zero does not gencrally occur at y = y* . Thus, the
exact location of the saddle point (x*,y¥) 1is also not known a priori,

It is well known that the critical solution in a neighborhood of
the saddle point is linear. The slope of the critical solution at the
saddle point can be determined if L'Hospital's rule can be applied to
the indeterminate form P/Q . When the location of the saddle point is
not known a priori, however, L'Hospital's rule cannot be applied
direetly.

Finally, we note that if <« 1s close to « , then the integral
curve y(x;a) remains close to y,. until either P or @ is nearly
zero. PFurthermore, the slope dy(x;a)/dx also remains close to
dycr/dx until the integral curve y(x;a) approaches the saddle point.
Thus, if « is sufficiently close to % s there will exist a point
(x pt’y t) on ys= y(X;a) , close to the saddle point, where the slope
dy?x;a)?gx best approximates the slope of the critical solution evaluated
at the saddle point. The function of the optimum-point method is to
locate this point. It must be re-emphasized that the location of the
optimum-point cannot depend explicitly on the critical value G, , on

"y
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the location of the saddle point (x*,y*) , or on the slope of the criti-
cal solution at the saddle point, since all these yuantitiles are unknown.

The actual location of the optimum point depends on a criterion based
on L'Hospital's rule. When this rule is applied to equation (2—1), we
obtain

ap
d dax
&y =aq ’ (2-3)
o

where the derivative da( )/dx 1is given by

d 0 . dy o
iR

When dy/dx is eliminated from equations (2-1) and (2-3), the following
result is obtained:

=0, (2-h)

This result is exact, of course, only at the saddle point. The left-hand
side of equation (2-4), which has the same dimensions as x , in general
is not zero when evaluated away from the saddle point. A new paramcter
XPQ is therefore defined as

=2 _ 5.
XPQ = I . (2-5)
X

a

f1Ble

This parameter is evaluatcd along a specific integral curve during the
forward integration of equation (2-1). How Xp is evaluated numerically
is discussed in the next chapter. The optimum point is then deflned as
the point nearest to (x*,y*) where IXPQI is & minimum.

We now indicate why one of the several minlmum values of IXPQ
that mey occur gives the point at which the slope dy(x;a)/dx best
approximates the slope of the critical solution evaluated at the saddle
point. We first assume that P and Q are continuously differentiable,
as 1s generally the case. Next, let us rewrite XPQ as follows:

ap

v -9fdy &
Pq” dF|ax ~ 4Q
dx dx

T

e
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Since P and Q are continuously differentiable, the ratio
(apP/ax)/(dQ/dx) may be evaluated at the saddle point, which is assumed
to be close to the optimum point. The guantity in parentheses is then
approximately the difference between the slope dy(x,a)/dx and the slope
of the critical solution at the saddle point. Therefore, this minimum
value of IXPQI corresponds to the optimum point.

As O tends toward O, , the integral curve y = y(x;0) tends
toward the critical solution. Thus, the optimum point will also tend
toward the saddle point as shown by the dots in Figure 1. All of the non-
equilibrium nozzle-flow calculations carried out in the course of this
work are in accord with the foregoing conclusions.

On the basis of the foregoing ideas, an approximate numerical solu-
tion that passes through the saddle polnt can be constructed as follows:

(8) The numerical integration of equation (2-1), for a particular
velue of @ , proceeds from (x,,¥,) until the optimum point
is reached.

(b) For values of x in an interval x Sx =X where the
opt tr ?
transfer point Xy is defined as some suitable point greater
than x*¥ , the linear approximation

d
y = (x—xopt)(axx)opt + yopt (2_6)

is used.

(c) For values of x greater than x¢, equation (2-1) is again
integrated numerically with the initial condition

o]
y(xtr) = (xtr-xopt)(a%>opt+ yopt . (2-7)

This scheme is deficient in that dy/dx will have a discontinuity at
xtr since P/Q , evaluated at (xgp,¥(X¢y)) , will not generally be equal
(dy/dx)O . This difficulty can be avolded 1if it is possible to
rewrlte equagion (2-1) in an alternative form that does not contain a
singularity in the region x S XS X In this case, both eguations
(2-1) (in its alternative form) and gs apply and consequently P/Q ,
evaluated at (xy,.,¥(x¢.)) , will equal (dy/dx)opt and no discontinu-
ity occurs. Chapter 3.0 demonstrates how this is accomplished for
nozzle-flow calculations.

The foregoing scheme is practical only if ]a—acrl is small., By
small we meen that & and 0y, &agree to three or four significantfigures.
This is, in fact, a considerable improvement over other saddle-point

T T
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methods, which frequently require much greater accuracy for the value of
@ . The condition that la'ohrl be small can be satisfied, for example,
by reguiring that both lP(xOp ’yopt)' and |Q(x0 t’yopt)l be small.
The numerical calculation can %hen be fully automated by including pro-
vision for restarting the calculation at x, when one or both of these
conditions is not satisfied. The new calculation would, of course, pre-
sumsbly use a value for « considerably closer to . than the preced-
ing one.

An additional advantage of the optimum-point method is that no special

choice for the variables is necessary. Furthermore, those equations not
containing the saddle-point singularity ave not affected.

3.0 APPLICATION TO NONEQUILIBRIUM NOZZLE FLOW

3.1 INTRODUCTORY REMARKS

This chapter applies the optimum-point method to the saddle-point
singularity that occurs in steady one-dimensional nozzle flow. For con-
venience, the discussion will be limited to nonequilibrium nozzle Tlow,
although the method is egually applicable to noneguilibrium diffuser flow
and two-phase nozzle or diffuser flow. In addition, the method has been

applied successfully to the approximate equilibrium nozzle-flow method
given in Part IT.

Specifically, this chapter describes how the noneguilibrium nozzle-
flow egquations can be integrated numerically from an initially subsonic
condition to a supersonic one. The same equations and notation, except
f'or the mass flow, given in Part II are retained here. Thus, the guanti-
ties x, y and & of Chapter 2.0 become x , distance along the nozzle

axis, T , temperature, and m , mase flow, respectively. Equation (2-1)
is replaced by

ar _ p .
== Q0 (3-1)
where
Q=1-1 , (3-2)
and
2
_ _u 1aa_ -
P= W {Adx o) - (3-3)
C n
) o™
i:li

T e

e




AEDC-TDR-64-29

In the foregoing, My 1is the frozen Mach number, u the flow speed,

Cp, the specifie heat at constant pressure of species 1 , ny the mole-
i

mass ratio of species 1 , Nj the total number of chemical species, and
A the nozzle areca. As is evident from definition (3—2), the singularity
occurs at My = 1 . At this point P must also be zero if ar/ax is to
have a finite value. Conseguently, the singularity occurs when simulta-
neously Mp = 1 and ¢ = A-L(dA/dx) . The quantity ¢ is given by

Nl dn :
_ 2 7—i+ L1 N
YOI L & 2 N
= i=1 1
_Jnl RT ‘ ni/
i=1 i=1
i Nl a Nl de T
X ) o ey (5-4)
] c_T+e ~-e -— + n -
L A} Pl i i dx /1 dx l ’
i=1 i=1 "
where R 1s the universal gas constant, eVi the vibrational energy

per mole of species 1 , and ep the energy of reaction per mole of

species i . Equations (3-1) through (3-4) constitute only a portion of
thce system of algebraic and ordinary differential equations that must be
solved simultancously as described in Part II. The other equations,
however, are not needed here since only eguation (3-1) contains a
singularity.

In order to clarify the subsequent discussion, the nozzle is divided,
as shown in Figure 2, into five regions. Each region is discussed in
turn in the ensuing sections. Region I, discussed in Section 3.2, con-
sists of the low-subsonic portion of the nozzle. (Section 3.2 also con-
slders how an initial estimale for the mass flow can be made.) Region
IT is similar to reglon I except that Xp is now evaluated at each
integrution step in order to locate the optimum point. Region III begins
al the optimum point and terminates when the flow becomes supersonic.
Since this region contains the saddle point, an inverted form of equa-
tion (3-1) is used here. Region IV "patches” the altered nozzle area
actually used in the forward integration in region IIT to the given nozzle
area. Region V includes the remainder of the nozzle. The final section
of the chapter, Section 3.7, discusses how the mass flow is modified if
a more precise solution is desired.

Threc input parameters, denoted by Vi (i = 1,2,3) , are introduced
1o control certain arbitrary features of the optimum-point nmethod. Thus
x = V; 1initiates region II, =V, initiates region IV, and V5 con-
trols the overall accuracy. The quantity V defined as the length of

region IV is not to be confused with the input parameters Vi .
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3.2 REGION I

The numerical integration of the nonequilibrium nozzle-flow egua-
tions starts at x5 , which for simplicity is taken as zero. At this
location, the flow is assumed to be in equilibrium at some density Po
and temperature T0 . This determines the initial composition ny o
and vibrational energy e, « As in Part IT, the nozzle area A’ is

o
considered to be a known fuﬁction of x .

The mass flow m and stagnation enthalpy hy , must also be given.
The best choice for m , of course, would be the critical mass flow m
Although this quantity is unknown, it satisfies the following inequal-
ities (see Bray (1959)):

meq < m . < m.

where mg, is the equilibrium-flow value of m and mp 1is the frozen-

flow value, i.e., the value with all n; and e, held constant at

i
their initial values. Based on expericnec, a good initial guess for hLhe
mass flow 1s 0.95 mp » The frozen mass flow is approximately given by

PoPen 2 (3-5)

where Agp,  1s the nozzle area at the throat, and the ratio of specific
heats 7y, 1is given by

. (3-6)

1=
Nl

¢ ~R)n
z:( P. ) i,o

BEquation (3-5) is exact when the initial conditions are the stagnation
conditions, Since conditions at Xy= 0 correspond to a non-zero frozen
Mach number, the value for mp given by equation (3—5) is somewhat too
small., This error is negligible, however, when the frozen Mach number
at X6= 0 1is small.
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Region I ends when x = V; , where the input parameter Vq; must be
chosen sufficiently large that thc first minimum of !X Ql in region II
corresponds to the optimum point. Generally Vl will Ele at a nozzle
location slightly upstream of the throat.

5.5 REGION IIL

After each integration step, XP is computed and stored for two
steps. Its numerical value is given by

15, pt +
. +P+ ) Q+Q+! ’ (5-7)
,P-P Q-Q

—

o]

XPQ =

e L=

where h 1is the integration step size and ( )+ denotes the value of
() at x-h . Equation (3-7) is thus a finite-difference form of
equation (2-5). A minimum of |XPQ| occurs when both

|x;Q'§ Ix;-él > IX;Ql s |qul 3 (3'8)

are satisfied, where X;+ is the value of XP at x-2h . Conditions
(3-8) are checked after fach integration step %n region II. When satis-
fied, the value of x corresponding to X; is the optimum point xyt .
At this time, the actual integration 1s at x,u+h . BSince region IIE
starts at  xgput » it is advisable that the gquantities

T, dT/dx , ni(i=l,...,Nl) 5 evi(i=.1,,,,,Nl) s

be slored f'or one step in region II.
3.1 REGION IILI
Region III begins where X = X, &and continues until the frozen

o
Mach number is greater than unity. ¥he temperature Tppy in this region
is given by (see equation (2-6))

dT

Tror = Topy + (& 'Xopt)(&)opt ‘ (3-9)

As pointed out in Chapter 2.0, it is desirable to retain equation (3-1)
in region III. This is accomplished by inverting this equation to obtain

=

-

- ( 2 o ! [ t

T B AIII\l (.L - f)u k Z Cpini \&)opti' ¢ . (5-10)
i=1

10
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In this equation Apyp is an unknown nozzle area. In region TIX (and
later in region IV) the given nozzle area is denoted by A, to distin-
guish iLL from the nozzle area actually uscd in the forward integration.
These latter nozzle areas are denoted by Agppp and AIV . In the above
Torm, equation (3-10) contains no singularity.

Equations (3-9) and (3-10 in conjunction with the other nozzle-flow
equations yield an exact numerical solution providing A, is replaced
by Arrz and Agy in regions III and IV. In other worgs, the mass flow
m being used becomes the critical mass flow for a nozzle whose area
distribution is the given one in regions I and II and is specified by
AIII and AIV in regions III and IV. A convenient measure of the accu-
racy of the optimum-point method that is useful for mass-flow modifica-
tion discussed in Section 3.7, is thus given by the percent error

A -A
B8ty 10° . (3-11)
g

Region IIT is terminated when M2 =V, , where the input parameter
Vo 1s slightly greater than unily (stpersbnic flow). This nozzlc loca-
tion is referred to as the transfer point Xpp *

3.5 REGION IV

At the transfer point, the area Appy and its derivative dAIII/dx
do not equal Ag and dAg/dx . Consequently, region IV constitutes a
short nozzle segment

S xXx = -
Xor =% % Xr +v (3-12)

that is used to "patch" Appy to the given area A, at xyp+V .

How the positive gquantity V is found is degcribed near the end of this
section. Thus, AIv(x) is used to join Apyp gradually to A, . The
nonegquilibrium equations of regions I and IT are used here. This section
theref'ore describes a procedure for calculating Apy .

Considerably morc cffort was expended in this phase than in the rest
of this work combined. A satisfactory but sophisticated procedure for
finding Ayy was arrived at only after an exhaustive search. Any simpler
procedure may work for specific stagnation conditions and given nozzle
geometry but will prove inadequate for others. Thus, a wide variety of
stagnation conditions and given nozzle geometries were used to check the
various procedures tried. Only the procedure given here proved to be sdt-
isfactory in all cases. TFor these reasons, the nature of the difficulty
will Tirst be described in detail.

11
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At the transfer point, the quantity AE%I(dAIII/dx) -¢ 1in equation
(3-3) is close to zero since it is zero just upstream of this point, .
Inasmuch as Ai%(dAIV/dx) and - ¢ are nearly equal at the start of
region IV, a small error in the value of Ai%(dAIV/dx) will result in
a large error in dT/dx - Therefore, unless Ary matches Agyy at
Xip in a smooth fashion, the temperature gradient in region IV will
differ drastically from that in region III, i.e., from (dT/dx)opt .
To avoild this discontinuity the three quantities

w,  apum (513

A 1 dA k3
’ Adx '’ dx\A dx. ’

are required to be continuous at xty, . These conditions are generally
sufficient to assure a smooth variation of T and dT/dx at Xip o

The area function A“1(dA/dx) is the most important of the fore-
going quantities since it appears directly in equation (3-1). Its
variation with x 1in the vicinity of the singularity is sketched in
Figure 3. IE this figure the s0lid curve represents the given area
fBEction A, (dAg/dx) ; while the dashed curve labeled III represents
AIII(dAIII/gx) . The dashed curve corresponds to a mass flow somewhat
greater than the critical one since dAIII/dx is greater than dAg/dx .
If the mass flow is less than the critical one the dashed curve would be
below the solid one. The other curves in Figure 3 are described later.

The continuity requirements (3-13) do not always completely remove
the discontinuity in dT/dx at x.. . When Runge-Kutta integration is
used (see Part III for further detalls), an unstablc feedback mechanism
may occur during the first integration step in region IV. This mecha-
nism ogerates as follows: As already noted, s small error in the value
of Ary(dApy/dx) first results in a larger error in dT/dx . Subse-
quent{y, the value of the temperature will be in error and thereby cause
errors in the values of dn;/dx and devi/dx . The velue of ¢ , given

by equation (3-4), therefore will also be somewhat in error. If the

errors in the values of AJu(dAry/dx) and ¢ are additive, as is occa-
: v IY ’

sionally the case, then the resulting value for dT/dx will now be

appreciably in error. This leads to further errors in the values of

dnj/dx , ete.

The above mechanism operates only during the first Runge-Kutta
integration step in region IV, no matter how small the size of the inte-
gration step. Basically these difficulties are due to the nozzle area
not being analytic at Xx¢, . Matching third or higher derivatives of
the area at Xip would partially alleviatc the problem. This 1s ilm-
practical, however, as will become apparent later. The discontinuity
in dT/dx , which 1s minimized when the procedure described later is ‘
used, decays rapidly after the initial integration step in region IV.
Thus, by the time three integration steps are completed the temperature
gradient has returned to a value consistent with (dT/dx)Opt .

12
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The Teedback difficulty just described is not alleviated by increas-
ing Vp . Increasing Vo merely shifts the transTer point x. down-
atream and allows the error E to increase further.

It is instructive to describe what happens when a polynomial is
used to represent A , since this formulation is quite simple. For
example, a fifth- degree olynomial in x could be used to match Aqrp
dAIII/dx and @2 AII Jdx®  at xtr and the same quantities at x¢,.+V
The resulting variation of A (dA / is sketched in PFigure 3 as
the dotted curve labeled mﬂmwmmYEmavm1Mﬁmu This curve con=-
stitutes a poor approximation to the given onc (solid curve) and will
result in values for dT/dx considerably different from (dT/dx)
throughoul most of region IV.

b4
.

opt

As mentioned earlier, when the mass flow is greater than the crit-
ical one, Ajyy and dAI I/dx at xi, wlll generally be greater than
their corresponding given values. Thus, 1f Ayy is to match A, at
xty +V , then the gradient dAy /dx must be less than dA /dx gurlng
part of region IV. This is the reason why any srea function
AIV(dAIV/dx) must cross Ag 1(aa_jax) (see Figures 3 and §). Similar
reagsoning also leads to the conc§u51on that the two curves cross when
the mass flow is less than the critical one.

We shall now describe the method of formulation and the procedure
Tinally arrived at to determine AIV . The conditions imposed are as
follows:

(a) At x = x,. , we require that
tr

- %-1)
Ay = Mg o (5-14)
1 Ay 1 o o (3-15)
= , :
Apy ax - Appp dx
_gl_(i_ Pyt 15' 1 Yy (5-16)
ax \AL, “dx x| AT ax
(b) At x = x¢.+V , we require that
- %1
AIV Ag ) (0 0
1 Yy 1 (5-18)
A ax ~ A_ dx ° o=l
v g

13
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E_/-l_ dAIV) - .d_l/.l__ gﬁ&) (3_19)
dx\AIV ax dX\Ag ax

(¢) In region TV, we also require that Ail(dAIV/dx) be a reason-
able approximation to A-+(aA /dx) . ~This condition will be
formulated more precisel§ later.

In addition to x , the variable x 1is also used, where
X = g(x- x, )-1. (3-20)
v tr

Equation (3-20) linearly transforms the interval (xy.,x¢,+V) into
(-1,1) . Since Aj§(dAry/dx) , rather than Apy , 18 of brimary impor-
tance, the following formulation is used:

dA_ dA
L 1V 2y L & -
o = M) e (3-21)
v =4
where A and A, are considered to be functions of x and the

function” A is 58111 to ve found, To determine Ayy » equation (3-21)
is integrated from x;. to x , thereby resulting in

A (x, ) .
Ay (%) = s A () exppy(%)] (3-22)
g tr
where
.’\;‘
M (%) = %j A (R)ax (3-23)
-1 .

Condition (3-1k4) is then satisfied by replacing Apy(xy,) in equation
(3-22) by the known quantity Aryr(xy,) . Condition (3-15) becomes
A (-1) = ny , where the known constant 17, is given by (see Figure 3)

W, = L Eﬁlll o1 Eﬁg] (3-2L)
17 |Appp ax A dx | )
N N,
e

14
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152 ;

i 1
= - == . = - 3-31
Iy = I /A e TE M2 (3-31)
~ "t

The foregoing results satisfy conditions (a) and (b) given by equa-
tions (3-14) through (3-19). Condition (c) is approximately satisfied
by choosing f3 appropriately. For simplicity, it is taken as

£.(x) = nx , (3-32)

where the constant ), is still to be determined.

Figure 3 shows a sketch designated by (IV) of Ai%(dAIV/dx) for
a positive value of 1y , while Figure 4 shows the corresponding
xl/nl curve. Figure 5 is similar to Figure 3 except that =ny 1is
negative, In either case, Ay has an exiremum in the vicinity of the
origin. This extremum and its lccation are designated by A and x* .
As is evident from Figures 3 and U4, condition (c) is approximately ful-
tilled if ]x{l is minimized.

For fixed values of 17, Ny , and ngz , X' is determined by the
condition

I

—_—l— =0, (3-538')
ox
or
3 1 +3>'<*)
I .= i: % (1, ¥ -
m, =gt R n211~+§* /-+x (+q5-+5nhx ) . (3-330)

To minimize |A¥| , we first note that Ki = xi(i*(nu);nh) . Hence,
the desired minimum occurs when

P O ;i O .
S e 4) (£ 0. (5-3ha)
R A A L

X=X X=X

The second term on the right-hand side, however, is zero by virtue of
equation (3-33a), Thus, equation (3-34a) can be shown to reduce to

(X% +1)°(* -1)%%* = 0, (3-3kb)

The solution of equations (3-33b) and (3-34b) readily results in

16
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- 3 1
x* =0, m,=);ﬂ1+);‘12- (3-35)

When equations (3-28) through (3-32) and equations (3-35) are com-
bined, the following is obtained:

€ ) n
1_ 7 .15/ 1% 1M
- —— = % + —8—('!] V,M[ II/Ag] + E - . (3-36)
1 1Y x=x, 1

The parameler V is now delermined by setbing -(N/ny) = (3/4) in

equation (3-36) where, for convenience, the term 1,/(16n,) is neglected.
When examined a posteriori, the value of this term is indeed found to be
small compared with unity. Thus, V is given by

p .
V= i @nlf\III/Ag} . (3-37)
X=X
tr

A smaller value than 3/4 for —(A{/ ) would result in a larger value
for V , while a larger value than 3 & would result in a smaller V .
The choice made here, however, proved to be an acceptable one. As a con-
sequence of equation (3-37), the constant Nz 1s given by

p)
“3‘”%“1"%“2' (3-38)

The pertinent equations of this section are summarized in a form
sultable for numerical work in Appendix T.
3.6 REGION V

This region includes the remainder of the nozzle. The given nozzle
arca is used, and the forward integration proceeds as described in
Part, II.
3.7 MASS-FLOJ MODIFICATION

The initial value for the maes flow when chosen according to the
method in Section 3.2 masy differ by as much as 5% from the critical mass
flow. To obtain a more precise calculation, a method is now described

for modifying the mass flow and lhe stagnation enthalpy.

After ecach integration step in region ITT the following check is
performed:

lE| = v, , (3-39)

17
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where E 1is defined by equation (3-11) and Vz 1is a positive input param-
eter that controls the accuracy of the method. As long as condition (3-39)
is satisf'ied, the integration proceeds as described in Section 3.4, If
condition (3-39) 1is not satisfied, then the integration sterts over agailn
at x,=10 with new values for the mass flow and stagnation enthalpy.

To determine a new value for the mass flow that is closer than the
preceding one to the critical mass flow, two different fictitious frozen
flows are compared. The first flow uses the current mass flow mg , th
temperature and nozzle area at x,= O , and the temperature and nozzle
area at the point in region TIIT where (3-39) is not satisfied. Accord-
ing to the usual frozen-flow egualions, m, is given by

a
—%
L b i
! T !
m, o=cg’ 5 i » (3-40)
? 7 -1 |
irA \12_/ oot o !
i o} o ! l{
b i ST
PN Ty ]
where 7y, is defined by equation (3-6) and the constant ¢, 1is
1
" N -2
'[ 2y \ 4 !
€ = \70-Lj RT, /, ni,oi Pofo (3-41)
- ’ i=1 J

The second flow is similar to the first except that the improved mass
flov my replaces m  and the value of A, at the point where (3-39)
is not satisfied replaces AIII +  Thus m,~ is given by

- o
‘ i i

s i

m = c, 5 . (3-42)
vy -1
2 o

Ay ) : Ty \ _ l
i \Arr1/ \Trrr/ i

Taking the ratio of equations (3-40) and (3-42) then results in the
desired mass=-flow correction formula
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A
5 (A Elm . (3-43)

The stagnation enthalpy hy is also modified in order that the
new nozzle-flow solution can start at the same equilibrium statle
previously used.

Thus,

Pos TO, ni o * and e,

This is readily accomplished providing p
other guantities are initial conditions.

m
a

"y

remain unchanged.

is unchanged, sincec the ‘
The requirement {
5

p = =
o Ao(uo)a

is therefore imposed, where

the mass flow

the mass flow

for flows (a) and (b) as follows:

is
is

Mg

(v),

and (uo)

* The energy equation is now evaluated at x,= 0O

TN
=
Q—/
I

1
h + gkuofa s (345a)
1 \ 2 . .
ho 42 (uo: ) (3-b5b)
o

Ao(uo)b

(3-b) |

is the flow speed at x = O when

[¢]

is the corresponding flow speed when

where hg, 1s the enthalpy at x = 0 .

is obtained as

(n

\

w2

By combination of equations
(3-hk) and (3-45), the desired stagnatlon enthalpy correction formula

[y ) ?‘.
H‘ - } . (s)')46) ‘
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4,0 RESULTS AND DISCUSSION

4,1 GIVEN CONDITIONS

This chapter describes the results of one noneguilibrium nozzle-
flow calculation that utilized the foregoing optimum-point method.
This calculation and all others that were performed are based on the
same gas model used in Parts T and II. This is a model of air consist-
ing of the five species O, N, NO, N, , and O, (identified by sub-
scripts 1= 1,...,5 , respectively). The same eight reactions and the
same rate constants are also retained.

The variation of nozzle area with distance for all five regions is
given by

Ay =10 - 6x + x° . (4-1)

This equation represents a hyperbolic nozzle with a throat area of

1 cm® located at x = 3.0 em . A)ll numerical integrations started at
x = O cm where the area is 10 em® and concluded at X = 4 em where
the supersonic flow is well into region V.

At the initial point x = O em the flow is assumed to be in equi:=
1librium at a temperature of 8000°K and a density of 2.80 x 1077 an/en
These conditions were chosen so that a significant portion of the dia-
tomic species would be dissociated at x = 0 . In addition, to insure
that the flow would depart from equilibrium upstream of the throat, a
small initial density as compared with that used in Parts I and II was
necessary. For all practical purposes, the foregoing are also the
stagnation conditions since the initial frozen Mach number is 0.0548,
The equilibrium composition and vibrational energies corresponding to
this density and temperature are given in the folliowing table:

EQUILIBRIUM COMPOSITION AND VIBRATIONAT, ENERGIES
FOR AIR AT 8000CK AND 2.80 X 10~0 GM/CMO

i SPRECIES ni(MOLES/ aM) evi(DYNE CM/MOLE)
1 .14598473 x 107t -

2 N .45508697 x 107+ .

3 NO .60071580% 10™ . 55920669 X 10™2
4 N, 45156159 x 102 . 53593265 x 1012
5 0, 72687672 x10™° . 57674503 10%2
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lnitial values for the mass flow and slagnation enthalpy were
chosen in accord with the discussion in Chapter 3, The final values for
these yuantities are given in the next section. The following values
were used for the input parameters Vi

v, = 2.8,
vV, = 1.0l ,
V, = 0.5 .

The optimum-point method was also used in conjunction with the
approximate equilibrium formulation given in Part IT and modified in
Appendix TIT of this report. The same nozzle geometry and initial con-
ditions as described above were used (except for mass flow and stagna-
tion enthalpy). The only changes were that the ny were sequenced as
follows: Op, N, NO, N,, O . The rcason for this change 1s discussed
in Appendix IT. 1In addition, for reasons given in the next secticn, a
value of 1.0 was used for Vg -

The calculations presented here were chosen because they proved to
be the most troublesome in terms of the instability described in Section
3.5. 1In fact, of the many procedures for determining A that were
tried only the one given here dealt successfully with this case. 1In
Lerms of instability, the approximate equilibrium calculation was more

troublesome than the nonequilibrium one. This point is discussed further
in Section k4.2.

.2 RESULTS OF ‘IHE OPTIMUM-POINT METHOD

On the basis of equation (3-5), the foregoing conditions result
in a frozen mass flow of 4.1925 gm/sec. Although eyuation (3.5) 1is
approximate, this value is very close to the true value since the initial
Mach number is nearly zero. The initial value For the noneguilibrium
mass Tlow was Luerefore chosen to be 0.95xL,1925 = 3,98 gm/sec. The
final values for the mass flow and stagnation enthalpy came out to be
4,0540000 gm/sce and T.0064802 x 101 cme/seC' , respectively. TFigurcs
5 through 1l are based on these nonequilibrium values. This value for
the mass flow is slightly below the critical one, as is evident from
Figure 5. A subsequent calculation with a mass flow of U4.0830000 gm/sec
showed that this larger value was, in comparison, well above the
critical one. Thus, the mass-flow value of 4.054 gm/sec is accurate at
least to three significant figures.

With regard to accuracy, let us firsl compare the location and
area of the throat for the two nozzle areas, Ag and ATII . This com-
parison is presented in the following table: )

21
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LOCATION AND AREA OF THE NOZZLE THROAT

NOZZLE THROAT THROAT
AREA LOCATION AREA
Ag 3.0000 cm 1.00000 cm2
2
AIII 3.0083 cm 0.99937 cm

Another pertinent quantity is the maximum value of the percent error E .
This occurs at Xp and is 0.217%, well below its upper limit Vz of
0.5%. Finally, we note that the calculated area function A~1(dA/dx) ,
shown in Figure 5, differs but slightly from the corresponding given
area function in both regions IIT and IV. (See Figure 3 for a more
detailed description of the curves in Figure 5.) We therefore conclude
that Aqqp and AIv do not differ significantly from A, for reason-
ably accurate values of the mass flow, i.e., three significant figures.
Calculations based on a more accurate estimate for the mass flow than
L.osh gm/sec could be readily obtained. Such a caleculation, however, wes
not deemed necessary since the results for 4.054% gm/sec and 4.083 gm/sec
differed only negligibly. Thus, when the optimum-point method is used
the resulting solution differs negligibly from the critical one for
regsonably accurste values of the mass flow.

For the approximate equilibrium calculation, the values for mass )
flow and stagnation enthalpy are 3.7268000 gm/sec and T.0048583x 1010
cn /sec , respectively. This calculation, which is also shown in
Figures 6 through 11, differed from the nonequilibrium one in two respects.
Pirst, greater accuracy was required for the mass-flow value. This is
basically & consequence of the curves for P= 0 and Q = O being close
together upstream of the saddle point. As a result, for any value of the
mass flow different from the critical one, the calculation behaves as if
the singularity were located at the geometric throat, where the equilib-
rium Mach number is unity, rather than at Mp = 1 . The extent of region
IIT is therefore somewhat longer and the percent error at the transfer
poinl is larger as compared with the nonequilibrium calculation. Hence,
a larger value was used for Vz in the equilibrium calculation. As in
the noneguilibrium case, however, the solution for slightly different
values of the mass flow (i.e., m = 3.7271 gm/sec ) differed negligibly
from the one given here. Thus, the mass-flow value of 3.7268 gm/sec is
accurate to at least four significant figures.

The second difference is that the instebility at the start of region i
IV is more pronounced for the equilibrium calculation. This resulted ’
in 8 reduction in the integration step size at the start of region IV.

Since the instability decays rapidly, however, the step size then proceeds

t0o increase to its former level. '
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4,3 GASDYNAMIC RESULTS

Figures 6 through 11 show the results of the nonequilibrium and
cquilibrium calculations, TIn all the figures the abscissa is the dis-
tance along the nozzle axis.

Figure 6 shows the temperature variation., TFor interest the temper-
ature variation is also shown for a flow frozen at the same initial
conditions. Trom this figure it is evident that the nonequilibrium
solution starts to diverge from the equilibrium one at about x = 1.8 em.
where the frozen Mach number is 0.23h, Along the enlire nozzle, the
nonegquilibrium and tf'rosen-i'low Lemperatures are gquite close, indicating
that once the flow diverges from the equilibrium one it free:es rapidly,
This rcsult is not a general one but rather is a consequence of the
specific stagnation conditions and novzle geometry used for these
calculations, In particular, a rapidly varying nozzle geometry, which
is the case here, tends to favor rapid freezing. The large difference
between the equilibrium and nonequilibrium temperature after x = 2 cm
is due to nitrogen recombination in the equilibrium flow. This recom-
bination is briefly discussed later.

Figure T shows the density and pressure variations. In comparison
with Figure 6, it is seen that density and pressure are not as sensitive
as the temperaturc to nonequilibrium effects, This result is in accord
with other nozzle-flow calculations, such as those of Bray (1959).

Figure 8 shows the variation of the flow-speed. '"The eguilibrium
and noneguilibrium specds differ slightly at x = O em because the
respective mass flows are different., TFigures 9 and 10 show the varia-
tion of chemical composition and vibrational energy, respectively.

All guantities shown in Figures 6 through 10, with the excuption
of flow-speed, are nearly constant in the region from x = 0 cm Lo
x = 1.8 em . In this low-subsonic region, the noneguilibrium (or
equilibrium) solulion is given approximately by

uA =

©l=

= constant , (4-2)

where all other variables arc constant. Thus, the nonequilibrium and
equilibrium solutions will be close here regardless of the values of
the chemical and vibrational reluxation lengths. In this region, all
relaxation lengths are directly proportional to velocity and therefore
increase steadily. Should any of the characteristic lengths become
sufficicntly large here, the flow will Lhen sturt to diverge from equi-
Librium as soon as compressibilily becomes important. This occurred

in the calculation shown here.
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Approximate values for the characteristic lengths at x = 0 cm and
at x = 1.8 em vwvere calculated according to the theory in Part II and
in Appendix II. They are presented in the following table:

CHEMICAL AND VIBRATIONAL CHARACTERISTIC LENGTHS

RATE EQUATION CHARACTERTSTIC CHARACTERISTIC
FOR LENGTH, CM, LENGTH, CM,

AT x =0 cm AT x=1.8 cm

. -3 -3
, CHEMICAL, 1.32X 10 5.50 % 10

, " 6.71x10'i 2.7% %107t
No , " 5.07x10" 2.07% 107>
NO , VIBRATIONAL 1.30 X107 5.32 1070
N, , " 1.59% 107" 6.50x 1077
0, , " 1.11 X107 4.55% 107>

At x = 0 cm gll of the characterlistic lengths are small. At

x = 1.8 em , however, the mole-mass ratio for atomic nitrogen should
start to diverge from its eguilibrium value, whereas the mole-mass
ratios for atomlc oxygen and nitric oxide are still close to their
equilibrium velucs. Since the mole-mass ratios for diatomic nitrogen
and diatomic oxygen are given by the equations for conservation of
components, the former will also start to diverge from equilibrium
while the latter will not.

The preceding conclusions are not discernible from Figure 9.
Indeed, this figure indicates that nitric oxide is the first species to
diverge from equilibrium and that atomic nitrogen remains close to its
equilibrium value until x = 3.0 cm . These fallacious conclusions are
a direct result of the log scale used for the chemical composition, s
convenicnt and common practice. To clarify the situation, the variation
of]ni-nie | is shown in Figure 11, where nj,e is the mole-mass
ratio of’species i for the equilibrium-flow solution. This figure
clearly shows that the mole-mass ratios for atomic and diatomic nitrogen
diverge from their equilibrium-flow value far more appreciably than do
those for the other species. Figure 11 is thus in accord with the
findings based on the characteristic lengths. The valley in the curve
for dlatomic oxygen in Figure 11 is due to the equilibrium and noncqui-
1librium mole-mass ratios crossing, as shown in Figure 9.

According to the foregoing table of characteristic lengths, the
vibrational energy of nitric oxide will diverge from its local equilib-
rium value upstream of the other vibrational energies. Thus Figure 10,
while correct, cannot be used to determine now closc any vibrational
energy is to its local-egquilibrium value. Ihis situation has been
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discussed in detail in Part II.

Figure 9 shows that a significant amount of nitrogen recombination
occurs in the equilibrium-flow solution. This recombination accounts
for the large difference between the equilibrium and nonequilibrium
temperatures. In the equilibrium calculation, the mole-mass ratios for
the other species, i.e., 0, O, , and NO , remain fairly constent.
This is due to the small decrease in the equilibrium temperature, which
favors recombination, being counterbalanced by the large decrease in
the equilibrium density, which favors dissociation.

25
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APPENDTX T

ANALYFLCAL EXPRESSIONS FOR A (x)

The variation of nozzle area with distancc in r

e§i0n IV is given
below. At the start of this region the parameters 14, Ny, ¥V, and o
are calculated. Equations (I-5) through (I-9) then determine Ary
and dAp/ax .
+ __J“_._d_[_\.IE_L.(.ifE (L-J_)
T~ o ax A dx
TIT g
- - X=x, -h
tr
. e A W™ (1-2)
1 AII'I. dx A dx -
“Ttr
= ' ! -3
v - on AIII/Ag. (1-3)
: = X=Xy
\4 .
ny = oy ()= 0h) (1-h)
X =g {x —xtr') -1 (1-5)
= 2
. x—}_\{ W32 - PR S i
xl(x) = (_’T | \.MOX + x° - 6% o)nl +(x +1)(hx"- x _L)n?;“ (1-6)

M) - g (4 J)[ (6%7-18 45774 BTR°- BTReL)n, + (i-Hl-)(E’i-l)(i-l)SnJ

(1-7)
Aw(x) = i_AIII/A%‘ix:x Ag(x) exp [xg(x)} (1-8)
- tr
A da ]
W, 1 gt )
= = AIV;xl(X) + W el (1-9)

e



AEDC-TDR-64-29

APPENDIX TI

MODIFICATION OF THE APPROXIMATE EQUILIBRIUM METHOD OF PART II

Two modifications of the approximate equilibrium method of Part II
are glven here. The need for these changes became apparent when equi-
1ibrium nozzle~flow solutions were sought that regquired the optimum-
point method. Once these changes were incorporated, along with the con-
dition that Pjj -0y # 0 (i = 1,...,Nz) as explained in Part TT, no
further difficulties were encountered. (See Part II for definition of
synbols. )

The first change requires that ; be replaced by - ;i

in equation
(34e) of Part II as follows:

~ ~ ] .
= = 71ni[} -L, i, 1=1,000,0,, (11-1)

where the l; l are large constants. To understand the reason for this
change, we first derive the characteristic lengths €4 for equations
(II-1). The derivation is explained in detail in Appendix III of Part II.
Thus, the €,y are given by

. OF
S T i=1,...,N, , (11-2)
1

with density, temperature, and all nj except n; held fixed. The
quantity Fy 1s defined by

s i=1,00.,N, . (1T-3)

When the characteristic lengths ¢.; are defined as above (i.e., without
absolute value signs and with density held fixed), they are equivalent
to u/nij given in Part III. After the partial differentiation is per-
formed, and conservation of components as well as Ly =1 (1lav of mass
action) are accounted for, we obtain

1 ;
€op =+ - _\ s i=1,..00,N, . (II-4)
i
i n, s
: P ~t .-l '
Vil 4 ; akiaik(n )i
k=N +1 ke
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Fig. 2 Sketch of Nozzle Configuration
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Fig. 3 Sketch of the Area Function A~ ! (dA/dx)
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Fig. 5 Area Function A~V (dA/dx)
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Fig. 6 Temperature
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Fig. 7 Pressure and Density
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SPEED OF FLOW, u,I0* cm/sec
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Fig. 8 Speed of Flow
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CHEMICAL COMPOSITION, n,,moles /gm of fluid
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Fig. 9 Chemical Composition
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Fig. 10 Vibrational Energy
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Ini- "i,eq' , moles / gm of fluid
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